

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

CHEMISTRY 5070/21

Paper 2 Theory

October/November 2013
1 hour 30 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Section A

Answer all questions.

Write your answers in the spaces provided in the Question Paper.

Section B

Answer any three questions.

Write your answers in the spaces provided in the Question Paper.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units.

A copy of the Periodic Table is printed on page 16.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

This document consists of 16 printed pages.

Section A

For Examiner's Use

Answer all the questions in this section in the spaces provided.

The total mark for this section is 45.

A1 Choose from the following compounds to answer the questions below.

calcium oxide
carbon dioxide
carbon monoxide
copper(II) sulfate
ethanol
ethene
iron(II) chloride
iron(III) chloride
nitrogen dioxide
silver chloride
silver iodide
sulfur dioxide

Each compound can be used once, more than once or not at all.

Which compound is

(a)	a solid, which when dissolved in water, gives a green precipitate with aqueo ammonia,	us
		[1]
(b)	a colourless gas which is formed when limestone is heated strongly,	
		[1]
(c)	a gas which is formed in the atmosphere by lightning activity,	[1]
(d)	a basic oxide,	נין
		[1]
(e)	formed when ethane undergoes complete combustion,	
		[1]
(f)	a white salt which is insoluble in water?	[1]
		נין
	[Total:	6]

Alke	enes	are a homologous series of unsaturated hydrocarbons.	
(a)	Giv	re the general formula of alkenes.	E
		[1]	
(b)	In a	addition to having a general formula, state two other characteristics of a homologous ies.	
	1		
	2	[2]	
(c)	Alk	enes can be made by cracking alkanes.	
	(i)	Give one condition required for cracking.	
		[1]	
	(ii)	Tetradecane, $C_{14}H_{30}$, can be cracked to form an alkene containing eight carbon atoms and an alkane.	
		Construct an equation for this reaction.	
(d)		mene reacts with bromine to form 1,2-dibromoethane, CH_2BrCH_2Br . The series of reaction in the series of the s	
	ivai		
		[1]	
(e)		ene reacts with hydrogen chloride to form the covalent compound chloroethane, ${}_{3}\mathrm{CH}_{2}\mathrm{C}\mathit{L}$	
	Suç	ggest two physical properties of chloroethane.	
	1		
	2	[2]	
(f)		logenoalkanes such as ${\rm CC}l_2{\rm F}_2$ are responsible for the depletion of ozone in the per atmosphere.	
	Des	scribe the importance of the ozone layer in the upper atmosphere.	
		[2]	

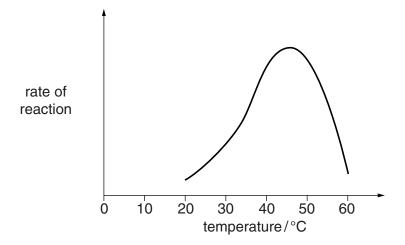
(a) Give the electronic configuration for calcium.							.bie.
(-)				_			[1]
(b)	Cal	cium has :	six natura	lly-occurring is	otopes.		
	(i)	State the	e meaning	of the term is	otopes.		
	(ii)	Complete these isc	e the follo				nic particles in two o
			isotope	number of protons	number of electrons	number of neutrons	
			⁴² Ca	-			
			⁴⁸ Ca				
	(i)	Construc	ct an equa	ution for this rea	action.		
	(i) (ii)		oth the fo	ition for this rea		nfiguration for	
(d)		Write bo calcium of	oth the for chloride.	rmula and the	electronic co		the ions present in
(d)	(ii)	Write bo calcium of	oth the for chloride. e products olysed.	rmula and the	electronic co	thode when mo	the ions present in [2] olten calcium chloride
(d)	(ii)	Write bo calcium of the calcium of t	oth the for chloride. e products olysed.	rmula and the	electronic co	thode when mo	the ions present in
(d)	(ii)	Write bo calcium of the calcium of t	e products	rmula and the	electronic co	thode when mo	the ions present in [2] olten calcium chloride
(d)	(ii)	Write bo calcium of the calcium of t	e products olysed.	rmula and the	anode and cat	thode when mo	the ions present in [2] olten calcium chloride[1] aqueous solution of
	(ii)	Name the is electronamode cathode Predict to calcium of the c	e products blysed.	rmula and the	anode and cat	thode when mo	[1] aqueous solution of[1]

[Total: 11]

A 4	Nitro	ogen and oxygen are present in dry air.
	(a)	What is the percentage composition by volume of each of these gases in dry air?
		nitrogen
		oxygen[2]
	(b)	What method is used to separate these gases from each other?
		[1]
	(c)	In a petrol engine, nitrogen and oxygen combine to form oxides of nitrogen such as nitrogen dioxide, NO_2 .
		State one harmful effect that nitrogen dioxide has on the environment.
		[1]
	(d)	One of the hydrocarbons in petrol is octane, $\rm C_8H_{18}$. In a petrol engine, some of the octane reacts to form carbon monoxide and water.
		Construct an equation for this reaction.
		[2]
	(e)	Catalytic converters are used to remove carbon monoxide and nitrogen dioxide from the exhaust gases of petrol engines.
		A catalyst containing rhodium and platinum or palladium is present in a catalytic converter.
		What is the function of a catalyst?
		[1]

		6
(f)	The	catalytic converter, carbon monoxide and nitrogen dioxide undergo redox reactions. se reactions reduce the amount of carbon monoxide and nitrogen dioxide in car austs.
	(i)	What is meant by the term redox reaction?
		[1]
	(ii)	Explain how the redox reactions in the catalytic converter decrease the amounts of carbon monoxide and nitrogen dioxide in car exhausts.
		[2]
		[Total: 10]
Hyc	Iroge	n peroxide, H ₂ O ₂ , is a colourless liquid.
(a)	Calc	ulate the percentage by mass of oxygen in hydrogen peroxide.
		o/ [O]
4. \	- .	
(b)		enzyme catalase is present in yeast. The enzyme catalyses the decomposition of eous hydrogen peroxide.
		$2H_2O_2(aq) \rightarrow 2H_2O(l) + O_2(g)$
	The	apparatus below is used to monitor this reaction.
		yeast + hydrogen water
		peroxide solution

What measurements should be taken in order to monitor the rate of this reaction?


For Examiner's Use

© UCLES 2013 5070/21/O/N/13

Α5

(c)	Describe and explain the effect of increasing the concentration of hydrogen peroxide on the rate of this reaction.
	[3]
(d)	The graph below shows how the rate of decomposition of hydrogen peroxide, catalysed

by yeast, varies with temperature. All other conditions are kept constant.

Suggest why the rate of reaction decreases rapidly from 45 °C to 60 °C.

[Total: 8]

Section B

The total mark for this section is 30.

Answer **three** questions from this section in the spaces provided.

For Examiner's Use

(u)	Describe the essential	reactions taking place in	the blast furnace.
/l=\	Ota al ia am allau maada		au matala ta inan
(b)		by the addition of carbon w to explain why an alloy o	
(b)	Use the diagrams below than pure iron.		or metals to iron. of iron and manganese is less malle
	Use the diagrams below than pure iron.		
	Use the diagrams below than pure iron. Y iron atoms		
	Use the diagrams below than pure iron. Y iron atoms	w to explain why an alloy o	of iron and manganese is less malle
	Use the diagrams below than pure iron. Y iron atoms	w to explain why an alloy o	of iron and manganese is less malle

(c)	Iron	reacts with dilute hydrochloric acid to form iron(II) chloride.
		$Fe(s) + 2HCl(aq) \rightarrow FeCl_2(aq) + H_2(g)$
	A st	udent added 2.1 g of iron to 50 cm ³ of 0.10 mol/dm ³ hydrochloric acid.
	(i)	Calculate the amount, in moles, of iron present.
		mol [1]
	(ii)	Calculate the amount, in moles, of hydrochloric acid present.
		mal [1]
		mol [1]
	(iii)	Calculate the volume of hydrogen formed in this reaction, measured at room temperature and pressure.

[Total: 10]

B7 (a) A compound of carbon, hydrogen and chlorine contains 0.48g of carbon, 0.08g of hydrogen and 1.42g of chlorine.

For Examiner's Use

(i) Deduce the empirical formula of this compound.

[2]

(ii) The relative molecular mass of this compound is 99.

Deduce the molecular formula of this compound.

[1]

(b) Chloroethene is another compound containing carbon, hydrogen and chlorine. The structure of chloroethene is shown below.

Draw a section of the polymer formed when chloroethene undergoes polymerisation to form poly(chloroethene).

[2]

(c)	Poly	y(chloroethene) is an addition polymer but nylon is a condensation polymer.	For
		scribe the difference between an addition polymer and a condensation polymer in ns of how they are formed from their monomers.	Examiner's Use
		[1]	
(d)		oroethene is made by reacting ethene with hydrogen chloride and oxygen in the sence of a catalyst of copper(II) chloride, ${\rm CuC}l_2$. The other product of the reaction is er.	
	(i)	Construct an equation for this reaction.	
		[1]	
	(ii)	Copper(II) chloride is made by heating copper(II) oxide, CuO, with hydrochloric acid.	
		Construct an equation for this reaction.	
		[1]	
	(iii)	Copper is a transition element.	
		State two physical properties of copper which are different from those of a typical Group I element such as sodium.	
		1	
		2[2]	
		[Total: 10]	

		12	
В8	Zind	sulfide is a compound that can be made by heating zinc powder with sulfur powder.	
	(a)	Describe two differences between a mixture of zinc and sulfur and a compound of z and sulfur.	inc
		1	
		2	
	(b)	The reaction between zinc and sulfur is exothermic.	.[2]
		Complete the energy profile diagram for this reaction. On your diagram label the product, the enthalpy change for the reaction, ΔH .	
		energy zinc + sulfur	
		progress of reaction	
			[2]
	(c)	Part of the structure of zinc sulfide is shown below.	
		Key Zn ions S ions	
		Deduce the empirical formula of zinc sulfide from this structure.	
			[1]

(d)		c sulfide reacts with hydrochloric acid to form hydrogen sulfide. aqueous solution of hydrogen sulfide behaves as a weak acid.
	Des	scribe what is meant by the term weak acid.
		[1]
(-)	7:	
(e)	Zind	c sulfate can be made by reacting zinc with dilute sulfuric acid.
		$Zn(s) + H_2SO_4(aq) \rightarrow ZnSO_4(aq) + H_2(g)$
	(i)	Write an ionic equation for this reaction.
		[1]
		ניז
	(ii)	Describe how you would prepare crystals of pure, dry zinc sulfate using this reaction.
		reaction.
		[0]
		[3]
		[Total: 10]

Etha	anoic	acid reacts with sodium hydroxide to form water and a salt.
(a)	Give	e the formula of the salt. [1]
(b)		reaction between ethanoic acid and sodium hydroxide is described as a tralisation reaction.
		e the simplest ionic equation for this reaction.
(c)		anoic acid reacts with methanol to form an ester and water.
		$CH_3CO_2H + CH_3OH \rightleftharpoons CH_3CO_2CH_3 + H_2O$
	The	reaction is endothermic.
	(i)	Describe what happens to the position of this equilibrium when the concentration of methanol is increased . Explain your answer.
	(ii)	Describe what happens to the position of this equilibrium when the temperature of the reaction mixture is decreased . Explain your answer.
		and readilion mixture to additional. Explain your anower.
		[1]
(d)	The	structure of the ester methyl benzoate is shown below.
(-)		Н
		O. O—C—H
		C H
		H C C H
		H C C H
	Ded	luce the molecular formula for methyl benzoate.
		[1]
	(a) (b)	(a) Give (b) The neur Write (c) Ethat (i) (ii)

(e)	Soc	lium hydroxide is an alkali.	For Examiner's
	Giv	e the formula of the ion present in sodium hydroxide which causes it to be alkaline.	Use
(f)	It re	tudent titrated a metal hydroxide with 0.200 mol/dm ³ hydrochloric acid. equired 12.5 cm ³ of hydrochloric acid to neutralise 25.0 cm ³ of 0.0500 mol/dm ³ metal roxide solution.	
	(i)	Calculate the amount, in moles, of hydrochloric acid used.	
	(11)	mol [1]	
	(ii)	Calculate the amount, in moles, of metal hydroxide present.	
	(iii)	Construct an equation for this reaction. Use the letter M to represent the metal in the metal hydroxide solution.	
		Ose the letter with represent the metal in the metal hydroxide solution.	
		[4]	
(g)	Nar	[1] me a metal hydroxide which can be used to treat excess acidity in soils.	
		[1]	
		[Total: 10]	

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

DATA SHEET

2013						F	he Peric	odic Tabl	The Periodic Table of the Elements Group	Elemen	ts						
_	=							5	da			≡	≥	>	5	₹	0
	-						- I										4 H
							Hydrogen 1										Helium 2
7	6					-		1				Ξ	12	14	16	19	20
=	Be											Ф	ပ	Z	0	ш	Ne
2 Lithium	Beryllium 4											Boron 5	Carbon 6	Nitrogen 7	Oxygen 8	Fluorine 9	Neon 10
23	24											27	28	31	32	35.5	40
Na	Mg											Ν	Si	<u>α</u>		CI	Ā
Sodium 11	Magnesium 12											Aluminium 13	Silicon 14	Phosphorus 15		Chlorine 17	Argon 18
39	40	45	48	51	52	55	56	29	29	64	65	70	73	75	62	80	84
Y	Ca	သွ	F	>	ప	Mn	Ьe	ပိ	Z	D C	Zu	Ga	Ge	As	Se	ģ	궃
Potassium 19	Calcium 20	Scandium 21	Titanium 22	Vanadium 23	Chromium 24	Manganese 25	Iron 26	Cobalt 27	Nickel 28	Copper 29	Zinc 30	Gallium 31	Germanium 32	Arsenic 33	Selenium 34	Bromine 35	Krypton 36
82	88	68	91	93	96		101	103	106	108	112	115	119	122	128		131
SV/1	Š	>	Z	qN	Mo	ည	Bu		Pd	Ag	ဦ	_I	Sn	Sp	<u>e</u>	Ι	Xe
Rubidium 37	Strontium 38	Yttrium 39	Zirconium 40	Niobium 41	Molybdenum 42	Technetium 43	Ruthenium 44	_	Palladium 46		Cadmium 48	Indium 49		Antimony 51	Tellurium 52	lodine 53	Xenon 54
133	137	139	178	181	184	186	190	192	195	197	201	204	207	209	209	210	222
S	Ва	Га	Ξ	<u>ra</u>	>	Re	SO	i	풉	Αn	Нg	11	Pb	Ξ	Ъ	Αt	Ru
Caesium 55	Barium 56	Lanthanum 57 *	Hafnium 72	Tantalum 73	Tungsten 74	Rhenium 75	Osmium 76	Iridium 77	Platinum 78	Gold 79	Mercury 80	Thallium 81	Lead 82	Bismuth 83	Polonium 84	Astatine 85	Radon 86
223	226	227															
ŗ	Ва	Ac															
Francium 87	Radium 88	Actinium 89 †															
* 58–71	* 58–71 Lanthanoid series	id series		140	141	144	147	150	152	157	159	162	165	167	169	173	175
+ 90-10	+ 90-103 Actinoid series	l series		ပီ	ቯ	PN	Pm		П	gg	Q L	Dy	운	ш	Ę	Υp	ב
2	25	2010		Cerium	Praseodymium	Neodymium	Promethium 6.1	E	Europium	Gadolinium 64	Terbium	Dysprosium	Holmium 67	Erbium 68	Thulium	Ytterbium 70	Lutetium 71

р

Key

260 Lawrencium 103

259 Nobelium

The volume of one mole of any gas is 24dm3 at room temperature and pressure (r.t.p.).